0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы зарядных устройств для автомобильных аккумуляторов

Схемы зарядных устройств для автомобильных аккумуляторов

Автомобильная зарядка

Бывают случаи, особенно зимой, когда владельцы автомобилей нуждаются в подзарядке автомобильного аккумулятора от внешнего источника питания. Безусловно, людям, не имеющим хороших навыков работы с электротехникой, желательно купить заводское устройство зарядки аккумуляторной батареи, ещё лучше приобрести пуско-зарядное устройство для запуска двигателя с разряженным аккумулятором без потерь времени на внешнюю подзарядку.

Но если есть небольшие знания в области электроники, можно собрать простое зарядное устройство своими руками.

Корпус зарядного 12в собран из цинковой жести

Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела.

Корпус был собран с отв. под вентилятор

Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом — КРВС-3510, благо они не много стоят:

В ЗУ прикрутил трансформатор, диодный мост

В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов.

В передней панели сделал отверстие для вольтметра

Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент.

АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ - кулер

Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ.

АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ 12в

Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик!.)

Форум по обсуждению материала АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ

Регулируемый источник питания 1,2 — 33 В на 4 A тока, с Lm350 + Tip147 транзистор.

Изучим разные типы датчиков приближения и объекты, которые они могут обнаруживать.

Схема усилителя и микрофона из пьезоэлемента, подходящая для сборки своими руками.

Принципиальная схема усилителя наушников с микросхемой MAX4410 и искажениями всего 0,003%.

Сборка и запуск зарядного устройства

Схема собрана ​​на односторонней печатной плате размером 71 x 60 мм. Исполнительный транзистор T3 должен быть установлен радиатор.

плате размером 71 x 60 мм

После сборки и проверки схемы установите запрограммированный микроконтроллер в панельку. Теперь вы можете подключить трансформатор и, если все сделано правильно, светодиод будет циклически мигать, указывая на работу устройства.

Немного теории

Процесс заряда аккумуляторов должен проходить по определенным правилам. Причем процесс заряда зависит от вида батареи. Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации. Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного случая. Такую возможность предоставляет сложное ЗУ с регулируемыми параметрами или купленное специально под эту батарею. Есть и более практичный вариант — сделать зарядное устройство для автомобильного аккумулятора своими руками. Чтобы знать, какие параметры должны быть, немного теории.

Читайте так же:
Регулировка клапанов на автомобиле заз шанс

Перед началом заряда надо измерить напряжение

Перед началом заряда надо измерить напряжение

Виды зарядных устройств для аккумуляторных батарей

Заряд аккумулятора — процесс восстановления израсходованной емкости. Для этого на клеммы аккумулятора подается напряжение, немного превышающее рабочие показатели АБ. Подаваться может:

  • Постоянный ток. Время заряда — не менее 10 часов, в течении всего этого времени подается фиксированный ток, напряжение изменяется от 13,8-14,4 В в начале процесса до 12,8 В в самом конце. При таком виде заряд накапливается постепенно, держится дольше. Недостаток этого способа — необходимо контролировать процесс, вовремя отключить зарядное устройство, так как при перезаряде электролит может закипеть, что существенно снизит его рабочий ресурс.
  • Постоянное напряжение. При заряде постоянным напряжением, ЗУ выдает все время напряжение 14,4 В, а ток изменяется от больших значений в первые часы заряда, до очень небольших — в последние. Потому перезаряда АБ не будет (разве что вы оставите его на несколько суток). Положительный момент этого способа — время заряда уменьшается (90-95% можно набрать за 7-8 часов) и заряжаемый аккумулятор можно оставить без присмотра. Но такой «экстренный» режим восстановления заряда плохо влияет на срок службы. При частом использовании постоянным напряжением АБ быстрее разряжается.

Графики изменения параметров ЗУ в разных режимах

Графики изменения параметров ЗУ в разных режимах

В общем, если нет необходимости спешить, лучше использовать заряд постоянным током. Если надо за короткое время восстановить работоспособность аккумулятора — подавайте постоянное напряжение. Если говорить о том, какое лучше сделать зарядное устройство для автомобильного аккумулятора своими руками, ответ однозначен — подающее постоянный ток. Схемы будут простые, состоящие из доступных элементов.

Как определить нужные параметры при зарядке постоянным током

Опытным путем установлено, что заряжать автомобильные свинцовые кислотные аккумуляторы (их большинство) необходимо током, который не превышает 10% от емкости батарей. Если емкость заряжаемой АБ 55 А/ч, максимальный ток заряда будет 5,5 А; при емкости 70 А/ч — 7 А и т.д. При этом можно ставить чуть меньший ток. Заряд будет идти, но медленнее. Он будет накапливаться даже если ток заряда будет 0,1 А. Просто для восстановления емкости потребуется очень много времени.

Так как в расчетах принимают, что ток заряда составляет 10%, получаем минимальное время заряда — 10 часов. Но это — при полном разряде аккумулятора, а его допускать нельзя. Потому фактическое время заряда зависит от «глубины» разряда. Определить глубину разряда можно, замерив вольтаж на АБ до начала заряда:

  • Полностью заряженная батарея (100%) имеет напряжение 12,7-12,8 В.
  • Половинный разряд (около 50%) с напряжением 12 В. Вот при таком разряде или чуть ниже надо ставить АБ на зарядку.
  • Почти полный или полный разряд (10-0%) — 11,8-11,7 В. До таких значений лучше не опускаться — частый полный разряд сокращает срок службы.

Конкретный вольтаж будет у каждого производителя свой, но можно примерно ориентироваться по этим данным (аккумуляторы Bosch)

Конкретный вольтаж будет у каждого производителя свой, но можно примерно ориентироваться по этим данным (аккумуляторы Bosch)

Чтобы рассчитать примерное время заряда АБ, надо узнать разницу между максимальным зарядом батареи (12,8 В) и текущим ее вольтажом. Умножив цифру на 10 получим время в часах. Например, напряжение на аккумуляторе перед зарядом 11,9 В. Находим разницу: 12,8 В — 11,9 В = 0,8 В. Умножив эту цифру на 10, получаем что время заряда будет около 8 часов. Это при условии, что подавать будем ток, который составляет 10% от емкости батареи.

Требования техники безопасности к зарядникам АКБ

Работа с электросхемами пожароопасна, поэтому важно соблюсти меры предосторожности:

  • оборудовать зону, где будет происходить заряжание, несгораемой подложкой;
  • обезопасить себя при сборке с помощью перчаток, изолирующего ковра, другой индивидуальной защиты (особенно актуально для простеньких сборок);
  • после запуска нового приспособления отслеживать протекающие процессы до момента завершения зарядки;
  • периодически снимать показания тока, напряжения, сопротивления, а также температурные изменения системы;
  • оснастить зарядник функцией автоматического отключения, особенно в случае самостоятельной домашней работы без контроля со стороны мастера.

При соблюдении этих норм использование самодельных электрических устройств не принесет вреда и поможет продлить срок службы аккумулятора.

Схемы самодельных ЗУ для автомобильных АКБ на TL494

Схемы самодельных ЗУ для автомобильных АКБ на TL494Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.

Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.

В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.

При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.

В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.

Настройка схемы зарядного устройства

В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.

Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.

Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

Монтаж ЗУ

Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.

Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.

Схема ЗУ на мс TL494 с нормализацией напряжения шунта

Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.

В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

Конструкция и монтаж

Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.

Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

Другие простые варианты регулировки напряжения в первичке

Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

  • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
  • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
  • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Схема импульсного зарядного устройства

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

плата импульсного зарядного устройства

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector