0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Преобразователи частоты

Преобразователи частоты

Преобразователи частоты используют для регулировки скорости вращения электродвигателей. Они преобразовывают определенную частоту и напряжение электрической энергии в переменную частоту и напряжение. Это обеспечивает возможность точной корректировки скорости и крутящего момента двигателей, машин и систем в соответствии с требованиями той или иной области применения и таким образом повышает энергоэффективность двигателей и систем.

Вследствие общей тенденции к автоматизации установок и процессов растёт и спрос на преобразователи частоты. Устройства находят всё более широкое применение в различных сферах, позволяя оптимизировать эксплуатацию двигателей и подключенных к ним систем.

mehrere große weiße Frequenzumrichter nebeneinander

Повышение степени автоматизации и цифровизации промышленности, например, маленьких и больших технологических установок, обусловило необходимость поиска более совершенных технологий и методов повышения энергоэффективности производственных объектов. Теперь электродвигатели с контролем скорости являются неотъемлемой частью не только больших компаний, но и коммерческих зданий, общественных помещений и маленьких частных предприятий.

Для управления мощными трёхфазными асинхронными двигателями и другими приводными системами, например двигателями с постоянным магнитом или синхронными реактивными двигателями, часто нужны преобразователи частоты, поскольку во многих случаях прямой запуск от сети питания невозможен из-за большого броска пускового тока.

ECblue Motor mit Frequenzumrichter im Hintergrund

Диапазон мощности преобразователей частоты простирается от нескольких ватт до более чем 100 МВт. Хотя КПД преобразователей частоты обычно превышает 95%, некоторые потери мощности всё же имеют место, как правило, в виде тепла. Данное тепло рассеивают посредством естественной конвекции либо систем водяного или воздушного (при помощи вентиляторов) охлаждения.

Компания ZIEHL-ABEGG предлагает надёжные, долговечные и энергоэффективные вентиляторы для охлаждения преобразователей частоты. Мы производим и поставляем системы охлаждения и вентиляции, имеющие международные допуски к эксплуатации в самых различных коммерческих и промышленных отраслях.

Высокоэффективные концепции охлаждения и вентиляции для современных систем управления двигателем

Системы для контроля и изменения скорости вращения электродвигателя имеют разные названия. Особенно часто используются такие термины, как преобразователь частоты (ПЧ), частотно-регулируемый привод (ЧРП), частотный преобразователь скорости (ЧПС) и привод с регулируемой частотой (ПРЧ). Также часто можно услышать термин «инвертор». Кроме того, различают НВП (низковольтный привод) и ВВП (высоковольтный привод).

Помимо повышения энергоэффективности, а также контроля и оптимизации процессов, преобразователи частоты используют при непрерывном совершенствовании автоматизации производства. Система управления с регулировкой скорости обеспечивает большую точность, больший комфорт и в целом более высокое качество продукции.

Сегодня в современных приводных системах всё чаще используется специальное программное обеспечение, открывающее доступ к новым функциям, вследствие чего преобразователи частоты приобретают ещё большее значение.

Значение энергоэффективности систем растёт не только в связи с внедрением всё более строгих стандартов, но и потому, что современные двигатели требуют интеллектуального контроля. Только так можно добиться оптимальной работы в любом диапазоне скорости. Кроме того, постоянное повышение энергоэффективности является важным этапом на пути к экологически безопасным технологиям, в основе которых, помимо прочего, лежит экономия энергии и оптимальное её использование.

Mehrere große Frequenzumrichter in einer Reihe

Сложные задачи в сфере охлаждения преобразователей частоты

По всему миру преобразователи частоты используются в различных электросетях. Поэтому вентиляторы, обеспечивающие охлаждение, также должны работать с разной частотой и напряжением. Широкий диапазон напряжения продукции ZIEHL-ABEGG, а также признанные во всём мире сертификаты гарантируют, что вы можете положиться на наши вентиляторы, в основе которых лежат передовые технологии.
Наше энергоэффективное, малошумное и надёжное оборудование поможет вам в процессе конструирования и эксплуатации высокоавтоматизированных систем. Мы поставляем отдельные вентиляторы и тщательно продуманные комплексные установки, соответствующие особенностям области применения и условиям монтажа.

Для охлаждения преобразователей частоты требуются абсолютно надёжные и безопасные вентиляторы. При работе с большими приводами высокой мощности отказ вентилятора может привести к повреждению оборудования и потере продукции.
Поскольку чувствительные компоненты инвертора могут быстро нагреваться, особенно на этапе запуска, время выхода системы вентиляции и охлаждения в рабочий режим имеет крайне важное значение. Аналогичным образом перерыв в охлаждении может привести к повреждению инвертора или падению мощности привода, спровоцировав таким образом производственные потери. Поэтому важно распознавать критические состояния системы охлаждения до возникновения сбоев — для этого ZIEHL-ABEGG предлагает своим клиентам специальные решения. Для снижения риска отказа зачастую используются резервные системы охлаждения. ZIEHL-ABEGG предоставляет подходящие модули связи для точного управления такими системами.

Fertigungsstraße Produktion von Frequenzumrichtern

Способы управления скоростью вращения вентилятора

Первый способ: переключение в BIOS функции, регулирующей работу вентиляторов

Функции Q-Fan control, Smart fan control и т. д. поддерживаемые частью материнских плат, увеличивают частоту вращения вентиляторов при возрастании нагрузки и уменьшают при ее падении. Нужно обратить внимание на способ такого управления скоростью вентилятора на примере Q-Fan control. Необходимо выполнить последовательность действий:

  1. Войти в BIOS. Чаще всего для этого нужно перед загрузкой компьютера нажать клавишу «Delete». Если перед загрузкой в нижней части экрана вместо надписи «Press Del to enter Setup» появляется предложение нажать другую клавишу, сделайте это.
  2. Открыть раздел «Power».
  3. Перейти на строчку «Hardware Monitor».
  4. Заменить на «Enabled» значение функций CPU Q-Fan control и Chassis Q-Fan Control в правой части экрана.
  5. В появившихся строках CPU и Chassis Fan Profile выбрать один из трех уровней производительности: усиленный (Perfomans), тихий (Silent) и оптимальный (Optimal).
  6. Нажав клавишу F10, сохранить выбранную настройку.
Читайте так же:
Регулировка карбюратор keihin скутер

Второй способ: управление скоростью вентилятора методом переключения

Распределение напряжений на контактах

Рисунок 1. Распределение напряжений на контактах.

Для большинства вентиляторов номинальным является напряжение в 12 В. При уменьшении этого напряжения число оборотов в единицу времени уменьшается – вентилятор вращается медленнее и меньше шумит. Можно воспользоваться этим обстоятельством, переключая вентилятор на несколько номиналов напряжения с помощью обыкновенного Molex-разъема.

Распределение напряжений на контактах этого разъема показано на рис. 1а. Получается, что с него можно снять три различных значения напряжений: 5 В, 7 В и 12 В.

Для обеспечения такого способа изменения скорости вращения вентилятора нужно:

  1. Открыв корпус обесточенного компьютера, вынуть коннектор вентилятора из своего гнезда. Провода, идущие к вентилятору источника питания, проще выпаять из платы или просто перекусить.
  2. Используя иголку или шило, освободить соответствующие ножки (чаще всего провод красного цвета – это плюс, а черного – минус) от разъема.
  3. Подключить провода вентилятора к контактам Molex-разъема на требуемое напряжение (см. рис. 1б).

Двигатель с номинальной скоростью вращения 2000 об/мин при напряжении в 7 В будет давать в минуту 1300, при напряжении в 5 В – 900 оборотов. Двигатель с номиналом 3500 об/мин – 2200 и 1600 оборотов, соответственно.

Схема последовательного подключения двух одинаковых вентиляторов

Рисунок 2. Схема последовательного подключения двух одинаковых вентиляторов.

Частным случаем этого метода является последовательное подключение двух одинаковых вентиляторов с трехконтактными разъемами. На каждый из них приходится половина рабочего напряжения, и оба вращаются медленнее и меньше шумят.

Схема такого подключения показана на рис. 2. Разъем левого вентилятора подключается к материнке, как обычно.

На разъем правого устанавливается перемычка, которая фиксируется изолентой или скотчем.

Третий способ: регулировка скорости вращения вентилятора изменением величины питающего тока

Для ограничения скорости вращения вентилятора можно в цепь его питания последовательно включить постоянные или переменные резисторы. Последние к тому же позволяют плавно менять скорость вращения. Выбирая такую конструкцию, не следует забывать о ее минусах:

  1. Резисторы греются, бесполезно затрачивая электроэнергию и внося свою лепту в процесс разогрева всей конструкции.
  2. Характеристики электродвигателя в различных режимах могут очень сильно отличаться, для каждого из них необходимы резисторы с разными параметрами.
  3. Мощность рассеяния резисторов должна быть достаточно большой.

Электронная схема регулировки частоты вращения

Рисунок 3. Электронная схема регулировки частоты вращения.

Рациональнее применить электронную схему регулировки частоты вращения. Ее несложный вариант показан на рис. 3. Эта схема представляет собой стабилизатор с возможностью регулировки выходного напряжения. На вход микросхемы DA1 (КР142ЕН5А) подается напряжение в 12 В. На 8-усиленный выход транзистором VT1 подается сигнал с ее же выхода. Уровень этого сигнала можно регулировать переменным резистором R2. В качестве R1 лучше использовать подстроечный резистор.

Если ток нагрузки не более 0,2 А (один вентилятор), микросхема КР142ЕН5А может быть использована без теплоотвода. При его наличии выходной ток может достигать значения 3 А. На входе схемы желательно включить керамический конденсатор небольшой емкости.

Четвертый способ: регулировка скорости вращения вентилятора с помощью реобаса

Реобас – электронное устройство, которое позволяет плавно менять напряжение, подаваемое на вентиляторы.

В результате плавно изменяется скорость их вращения. Проще всего приобрести готовый реобас. Вставляется обычно в отсек 5,25”. Недостаток, пожалуй, лишь один: устройство стоит дорого.

Устройства, описанные в предыдущем разделе, на самом деле являются реобасами, допускающими лишь ручное управление. К тому же, если в качестве регулятора используется резистор, двигатель может и не запуститься, поскольку ограничивается величина тока в момент пуска. В идеале полноценный реобас должен обеспечить:

  1. Бесперебойный запуск двигателей.
  2. Управление скоростью вращения ротора не только в ручном, но и в автоматическом режиме. При увеличении температуры охлаждаемого устройства скорость вращения должна возрастать и наоборот.
Читайте так же:
Карбюратор дааз 21213 регулировка

Сравнительно несложная схема, соответствующая этим условиям, представлена на рис. 4. Имея соответствующие навыки, ее возможно изготовить своими руками.

Изменение напряжения питания вентиляторов осуществляется в импульсном режиме. Коммутация осуществляется с помощью мощных полевых транзисторов, сопротивление каналов которых в открытом состоянии близко к нулю. Поэтому запуск двигателей происходит без затруднений. Наибольшая частота вращения тоже не будет ограничена.

Работает предлагаемая схема так: в начальный момент кулер, осуществляющий охлаждение процессора, работает на минимальной скорости, а при нагреве до некоторой максимально допустимой температуры переключается на предельный режим охлаждения. При снижении температуры процессора реобас снова переводит кулер на минимальную скорость. Остальные вентиляторы поддерживают установленный вручную режим.

Схема регулировки с помощью реобаса

Рисунок 4. Схема регулировки с помощью реобаса.

Основа узла, осуществляющего управление работой компьютерных вентиляторов, интегральный таймер DA3 и полевой транзистор VT3. На основе таймера собран импульсный генератор с частотой следования импульсов 10-15 Гц. Скважность этих импульсов можно менять с помощью подстроечного резистора R5, входящего в состав времязадающей RC-цепочки R5-С2. Благодаря этому можно плавно изменять скорость вращения вентиляторов при сохранении необходимой величины тока в момент пуска.

Конденсатор C6 осуществляет сглаживание импульсов, благодаря чему роторы двигателей вращаются мягче, не издавая щелчков. Подключаются эти вентиляторы к выходу XP2.

Основой аналогичного узла управления процессорным кулером являются микросхема DA2 и полевой транзистор VT2. Отличие только в том, что при появлении на выходе операционного усилителя DA1 напряжения оно, благодаря диодам VD5 и VD6, накладывается на выходное напряжение таймера DA2. В результате VT2 полностью открывается и вентилятор кулера начинает вращаться максимально быстро.

Как датчик температуры процессора используется кремниевый транзистор VT1, который приклеивают к радиатору процессора. Операционный усилитель DA1 работает в триггерном режиме. Переключение осуществляется сигналом, снимаемым с коллектора VT1. Точка переключения устанавливается переменным резистором R7.

VT1 может быть заменен маломощными n-p-n транзисторами на основе кремния, имеющими коэффициент усиления более 100. Заменой для VT2 и VT3 могут служить транзисторы IRF640 или IRF644. Конденсатор С3 – пленочный, остальные – электролитические. Диоды – любые маломощные импульсные.

Настройка собранного реобаса осуществляется в последовательности:

  1. Ползунки резисторов R7, R4 и R5 поворачиваются по часовой стрелке до упора, кулеры подключаются к разъемам XP1 и XP2.
  2. На разъем ХР1 подается напряжение в 12 В. Если все в порядке, все вентиляторы начинают вращаться с максимальной скоростью.
  3. Медленным вращением движков резисторов R4 и R5 подбирается такая скорость, когда исчезает гул, а остается лишь звук перемещающегося воздуха.
  4. Транзистор VT1 нагревается приблизительно до 40-45° С, а движок резистора R7 поворачивается влево до тех пор, пока кулер не переключится на максимальную скорость. Спустя примерно минуту после окончания нагрева значение скорости должно упасть до первоначального.

Собранный и настроенный реобас устанавливается в системный блок, к нему подключаются кулеры и температурный датчик VT1. Хотя бы первое время после его установки желательно осуществлять периодический мониторинг температуры узлов компьютера. Программы для этого (в том числе и бесплатные) не проблема.

Остается надеяться, что среди описанных способов уменьшения шума компьютерной системы охлаждения каждый пользователь сможет найти для себя наиболее подходящий.

Регулировка скорости кулеров с помощью дополнительных устройств

Специальные программы и настройки BIOS являются не единственными доступными пользователю способами уменьшить обороты кулеров на ноутбуках и ПК.

На многих дорогостоящих системах охлаждения присутствуют ручные регуляторы, позволяющие снизить уровень шума или повысить обдув радиатора процессора нажатием на кнопку или кручением колесика на контроллере.

Такие системы работают значительно тише идущих в комплекте с CPU бюджетных аналогов и демонстрируют гораздо большую эффективность.

В качестве варианта также стоит рассмотреть покупку механического регулятора “Реобаса”.

Это устройство устанавливается в отсек для дисковода (кому нужны DVD/CD-диски в 2018 году), подключается к FAN-разъему на материнской плате и позволяет проводить регулировку скорости лопастей вентиляторов на CPU и корпусе.

Обычно на реобасе есть экран, на котором наглядно отображаются температуры и текущие обороты систем охлаждения — подкрутили настройки, и нет уже надоедливого шума.

Тег FAN

Вентилятор или кулер. Механическое устройство с лопастями, предназначенное для принудительного обдува различных устройств с целью их охлаждения.

Схема простого и надёжного регулятора скорости вращения компьютерного вентилятора (кулера)

Основной целью всех регуляторов скорости вращения компьютерного вентилятора является снижение его уровня шума. Скорость вращения вентилятора зависит в первую очередь от уровня, подаваемого на него напряжения. Чем меньше уровень подаваемого напряжения, тем меньше скорость и наоборот.

Читайте так же:
Регулировка магнитного тормоза мультипликаторной катушки окума

Автор: Шестериков В.В.

  • FAN

0 0 [0]

Термоконтроль для ПК своими руками

Сидя ночью за компьютером, я обратил внимание на излишний шум, издаваемый системой воздушного охлаждения. А почему бы автоматически, в зависимости от температуры, не управлять оборотами кулеров? После 2х месяцев, в течение которых я искал подходящую схему, усовершенствовал и настроил её. Схема выполняет релейное регулирование оборотов сразу 3х кулеров в зависимости от температуры.

  • FAN

0 0 [0]

Блок управления вентиляторами компьютера

В предлагаемом блоке регулирование напряжения, питающего двигатели, ведется импульсным методом! В качестве коммутирующих элементов использованы полевые транзисторы с очень низким (доли ома) сопротивлением каналов в открытом состоянии. Они не ограничивают пусковой токи практически не уменьшают питающее напряжение на работающих на полную мощность вентиляторах.

  • FAN

2 0 [0]
2010 г. />

ШИМ регулятор оборотов вентилятора

В основе данного устройства лежит контроллер PIC18F25K20, который позволяет регулировать обороты вентилятора при помощи ШИМ (широтно-импульсной модуляции). Это дает такие преимущества как: плавная регулировка оборотов двигателя, низкий уровень шума, высокая долговечность, большая надежность, меньшее энергопотребление и пусковой ток.

  • Sprint-Layout

4 3.8 [1]

Устройство управления вентилятором охлаждения усилителя мощности

Принцип управления вентилятором принудительного охлаждения УМЗЧ с теплоотводом небольших размеров состоит в том, что обдув включается при определенном превышении уровня сигнала на выходе усилителя, поэтому шум вентилятора при пониженной мощности практически не слышен. Устройство с вентилятором можно рекомендовать и для установки в усилители обычной конструкции (с естественным конвективным охлаждением), находящиеся в сложных условиях эксплуатации

  • FAN

3 0 [0]
2012 г. />

Разборка компьютерного вентилятора (кулера)

Итак, я решил собрать всевозможные кулеры и написать о них нечто вроде статейки – доступно и просто, иллюстрируя картинками разборку "крылатых"

  • FAN

6 0 [0]
17.03.2014 />

PC FAN с контролем температуры

В данном проекте описывается схема простейшего устройства управления вентилятором ПК на LM317, с контролем температуры, с применением NTC-резистора в качестве датчика температуры

  • FAN

0 3.5 [2]
30.05.2014 />

Управление кулером с плавным пуском

Регулятор оборотов кулера с функцией плавного пуска с возможностью ручной регулировки и с коррекцией по температуре.

  • Proteus

1 5 [1]
19.08.2013 />

Регулятор скорости вращения вентиляторов 12В

Силовые элементы источников питания или усилителей мощности, нуждающиеся в охлаждении, далеко не всегда работают на полную мощность, и если для охлаждения используется вентилятор на 12В, он будет создавать лишний шум, впустую обдувая радиатор. Предлагаемое устройство позволит минимизировать шум, изменяя скорость вращения лопастей пропорционально температуре нагрева радиатора.

  • ОУ

36 0 [0]
16.02.2015

Малошумящий терморегулируемый вентилятор для усилителя НЧ

Схема устойчивого запуска компьютерного трёхпроводного вентилятора с последующим уменьшением количества его оборотов до минимального. Возможно введение автоматической регулировки оборотов от температуры.

Когда может потребоваться настройка скорости кулера

Регулировка скорости вращения проводится в BIOS с учётом настроек и температуры на датчиках. В большинстве случаев этого достаточно, но иногда система умной регулировки не справляется. Разбалансировка происходит в следующих условиях:

  • разгон процессора/видеокарты, увеличение вольтажа и частоты основных шин;
  • замена стандартного системного кулера на более мощный;
  • нестандартное подключение вентиляторов, после чего они не отображаются в BIOS;
  • устаревание системы охлаждения с шумом на высоких оборотах;
  • загрязнение кулера и радиатора пылью.

Если шум и увеличение скорости кулера вызвано перегревом, снижать обороты вручную не стоит. Лучше всего начать с чистки вентиляторов от пыли, для процессора — снять полностью и заменить термопасту на подложке. После нескольких лет эксплуатации эта процедура поможет снизить температуру на 10–20°C.

Стандартный корпусный вентилятор ограничен скоростью около 2500–3000 оборотов в минуту (RPM). На практике устройство редко работает на полную мощность, выдавая около тысячи RPM. Перегрева нет, а кулер всё равно продолжает выдавать несколько тысяч оборотов вхолостую? Придётся исправлять настройки вручную.

Предельный нагрев для большинства элементов ПК — около 80°C. В идеале необходимо держать температуру на уровне 30–40°C: более холодное железо интересно только энтузиастам-оверклокерам, с воздушным охлаждением такого добиться сложно. Проверить информацию по температурным датчикам и скорости вентиляторов можно в информационных приложениях AIDA64 или CPU-Z/GPU-Z.

Приводное устройство вентилятора

Конструкция вентилятора охлаждения агрегата состоит из шкива и закрепленных на нем лопастей. Эффективность нагнетания воздуха обеспечивается установкой лопастей под определенным углом. Принцип работы вентилятора охлаждения двигателя зависит от конструктивных особенностей привода.

Читайте так же:
Вихрь 30 регулировка карбюратора доработки

Механический

Вращение на шкив от коленчатого вала через ременную передачу. Это простейшая установка, которая находится в постоянном зацеплении с коленвалом. Недостаток такого механизма в том, что для постоянного вращения вентилятора охлаждения радиатора ДВС затрачивает много полезной энергии.

На сегодняшний день механический тип привода почти не встретить. Обычно их устанавливают на агрегаты с продольным расположением, вездеходные джипы.

Гидромеханичиеский

Это приводное устройство, работающее от разницы давления в муфте. Муфты бывают двух типов: гидравлическая и вязкостная. Частота вращения последнего равна входным оборотам коленчатого вала. Поэтому, для сохранения крыльчатки и лопастей при высоких оборотах мотора используют вязкостную муфту.

Вентилятор охлаждения двигателя

Как она работает

Корпус такой муфты заполнен специальной жидкостью — силиконом. Когда движок работает под постоянной нагрузкой или на высоких оборотах, происходит процесс нагрева силиконовой жидкости. По мере нагрева жидкость расширяется, постепенно зажимая муфту, что приводит в работу вентилятор охлаждения.

Гидравлическая конструкция работает в зависимости от изменения объема масла. Момент блокировки не зависит от частоты вращения коленвала. В режиме высоких оборотов ДВС муфта не дает крыльчатки разгонятся, предохраняя ее от разрушения. Первоначальной задачей системы управления вентилятором является удерживать оптимальные обороты необходимые для эффективного охлаждения.

Применение преобразователей частоты Danfoss для управления вентиляторами конденсаторов и градирен

Применение преобразователей частоты для управления вентиляторами конденсаторов и градирен позволяют значительно повысить эффективность их работы и уменьшить потребление электроэнергии.

Управление конденсатором холодильной системы

Воздушный конденсатор конструктивно состоит из теплообменника и вентиляторов, которые потоком атмосферного воздуха охлаждают теплообменник.
Регулирование производительности вентиляторов конденсатора в зависимости от температуры окружающей среды позволяет повысить эффективность холодильной системы в целом. Преобразователь частоты регулирует скорость вращения электродвигателя вентилятора согласно давления конденсации, которая зависит от температуры наружного воздуха. При этом, снижение температуры конденсации на 1°C, позволяет снизить энергопотребление компрессоров на 2–3%. Например, для Москвы, экономия может достигнуть 15–20% от энергопотребления всей холодильной системы.

Управление градирнями

Градирня представляет собой устройство для охлаждения большого количества теплоносителя направленным потоком атмосферного воздуха.
Существует несколько способов оптимального, с точки зрения энергопотребления, управления градирнями:
• управление вентиляторами градирни по температуре теплоносителя на выходе из конденсатора;
• управление насосами конденсатора по температуре воды конденсатора.

Охлаждающий вентилятор градирни управляемый преобразователем частоты

Охлаждающий вентилятор градирни управляется в зависимости от температуры воды в конденсаторе.
Преобразователь частоты поддерживает точную скорость вращения вентилятора, необходимую для охлаждения воды.
Управление скоростью вращения вентилятора осуществляется при помощи датчика температуры, расположенного в нижней части градирни. Кроме того, преобразователь частоты может обеспечить цикличность работы вентилятора посредством специальной функции “Сон”.

Данная функция позволяет автоматически останавливать вентилятор, когда потребность в охлаждении воды находится на низком уровне в течении заданного интервала времени. Когда нагрузка на систему возрастает, преобразователь частоты запускает электродвигатели вентиляторов для обеспечения требуемых параметров охлаждения.

Использование метода управления производительностью насосов вместо дросселирования клапаном позволяет экономить порядка 20-40% электроэнергии, обеспечивая при этом требуемые параметры температуры и скорости потока воды.

Ввод в эксплуатацию

Преимущества применения преобразователей частоты

Для вентиляторов конденсатора

Применение частотно-регулируемого приводаПреимущества
Регулирование скорости вращенияЭкономия энергопотребления холодильной системы при использовании алгоритма управления производительностью вентиляторов в зависимости от температуры окружающей среды.
Снижение уровня шума вентиляторов.
Увеличение эффективности используемой площади теплообменника.
Возможность увеличения производительности конденсатора путем увеличения частоты вращения вентиляторов выше номинала в периоды пиковых нагрузок
Особенности преобразователей частоты ДанфоссПреимущества
Функция автоматической оптимизации энергопотребленияСокращение расходов на электроэнергию до 5%
Функция автоматической адаптации двигателяСокращение расходов на электроэнергию до 5%
Функция "СОН"Снижение износа оборудования, сокращение расходов на электроэнергию до 5%
Встроенный логический контроллерСнижение количества используемых компонентов в системе
ОбучениеЭкономия времени и денег на обучение сотрудников

Для градирни (вентиляторы и насосы)

Плавный пускОтсутствие гидроударов в системе
Регулирование скорости вращенияСокращение расходов на электроэнергию
Легкая балансировка системыСокращение расходов на пусконаладку системы
Меньше давление в системе, сокращение утечекСнижение расхода воды
Автоматическая работа Преобразователя частоты по датчику температурыСтабильная установка температуры
Особенности преобразователей частоты ДанфоссПреимущества
Функция автоматической оптимизации энергопотребленияСокращение расходов на электроэнергию до 5%
Функция автоматической адаптации двигателяСокращение расходов на электроэнергию до 5%
Функция "СОН"Снижение износа оборудования, сокращение расходов на электроэнергию до 5%
Специальное антикоррозионное покрытие печатных платУвеличение срока службы Преобразователя частоты в тяжелых условиях эксплуатации
Встроенный счетчик электроэнергииМониторинг энергопотребления системы и планирование регламентных работ
Встроенный сетевой протокол BACnetЛегкая интеграция в BMS-систему, не нужен дополнительный преобразователь протоколов
Встроенный дроссельУвеличение срока службы преобразователя частоты
ОбучениеЭкономия времени и денег на обучение сотрудников
Встроенный логический контроллерСнижение количества используемых компонентов в системе
Читайте так же:
Карбюратор вальбро бензопилы регулировка

Пример. Расчет экономии электроэнергии с использованием преобразователей частоты для вентиляторов конденсаторов

На конденсаторе холодильной системе используются несколько вентиляторов суммарной мощностью 2,56 кВт. Установка работает 3500 часов в год, необходимо поддерживать температуру конденсации на уровне 35°С. Установка состоит из четырех вентиляторов, мощность каждого 0,64 кВт.

Потребляемая энергия при ступенчатом регулировании = 8970,2 кВт/ч
Потребляемая энергия при использовании Преобразователя частоты = 3363,84 кВт/ч
Стоимость преобразователя серии VLT Micro Drive FC 51 мощностью 3 кВт ≈ 12 250 руб.
Стоимость 1 кВт/ч электроэнергии ≈ 3 руб.
Экономия = 8970,2 – 3363,84 = 5606,36 кВт/ч.
Экономия в руб = 5606,36 * 3 = 16 819 руб.
Отдельно посчитаем экономию, которая достигается за счет энергосберегающих функций «Данфосс».
Напомним, что функция АЕО дает 5% экономии, автоматическая адаптация двигателя добавляет 5%.

Общая дополнительная экономия составит 10%.
Экономия за год = 0,1 * 3 * 2,56 * 3500 = 2 688 руб.
Общая экономия электроэнергии = 16 819 + 2 688 = 19 507 руб.
Экономия за счет встроенного логического контроллера составит 4000 руб (это стоимость внешнего контроллера).
Экономия за счет бесплатного обучения в учебном центре «Данфосс» основам работы с преобразователям частоты 24 000 руб (это стоимость обучения для двух человек).

Заметим, что мы провели расчет не для всех преимуществ преобразователей частоты «Данфосс», итоговая экономия будет еще больше.

Сведем все расчеты в таблицу

Применение частотно-регулируемого приводаЭкономия, руб.
Изменение производительности насоса за счет частоты вращения16 819
Особенности преобразователей частоты ДанфоссЭкономия, руб.
Функция автоматической оптимизации энергопотребления2 688
Функция автоматической адаптации двигателя
Встроенный логический контроллер4 000
Обучение24 000
Итого47 507

В итоге, на один вентилятор с преобразователем частоты экономия в год составит 47 507 руб. Покупка преобразователя частоты в данном случае окупится менее чем за полгода.

Пример. Расчет экономии электроэнергии с использованием преобразователей частоты для градирен

Градирня с вентилятором мощность 30 кВт. Установка работает 7000 часов в год.
70% времени вентилятор работает с производительностью 85%, остальное время на номинальной скорости.
Учитывая, что потребляемая мощность электродвигателя прямо пропорциональна кубу производительности насоса и КПД установки приблизительно равно 0.8, получим:
Потребляемая Мощность = 30 кВт x (0.853)/КПД установки (0.8) = 23 кВт= 76,7 % (от номинальной мощности).
Стоимость преобразователя серии VLT HVAC Basic FC 101 мощностью 30 кВт ≈ 101 500 руб.
Стоимость 1 кВт/ч электроэнергии ≈ 3 руб.
Экономия за сутки = (30 кВт – 23 кВт) * 24 ч * 0,7 = 117,6 кВт/ч.
Экономия за сутки = 3 * 117,6 = 352,8 руб.
Экономия за год = 352,8 руб * 292 дней ≈ 103017,6 руб.
Отдельно посчитаем экономию, которая достигается за счет энергосберегающих функций «Данфосс».

Напомним, что функция АЕО дает 5% экономии, автоматическая адаптация двигателя добавляет 5%.
Общая дополнительная экономия составит 10%.
Экономия за сутки = 3 * 0,1 * 30 * 24 * 0,7 = 151,2 руб.
Экономия за год = 151,2 * 295 = 44 604 руб.
Общая экономия электроэнергии = 103 017 + 44 604 = 147621 руб.
Экономия за счет встроенного логического контроллера составит 4000 руб (это стоимость внешнего контроллера).
Экономия достигаемая за счет встроенного дросселя на звене постоянного тока может составить около 8000 руб (это стоимость внешнего дросселя для такой мощности).
Экономия за счет бесплатного обучения в учебном центре «Данфосс» основам работы с преобразователям частоты 24 000 руб (это стоимость обучения для двух человек).

Заметим, что мы провели расчет не для всех преимуществ преобразователей частоты «Данфосс», итоговая экономия будет еще больше.

Сведем все расчеты в таблицу

Применение частотно-регулируемого приводаЭкономия, руб.
Изменение производительности насоса за счет частоты вращения103 017
Особенности преобразователей частоты ДанфоссЭкономия, руб.
Функция автоматической оптимизации энергопотребления44 604
Функция автоматической адаптации двигателя
Встроенный логический контроллер4 000
Обучение24 000
Итого183 621

В итоге, на один вентилятор с преобразователем частоты экономия в год составит 183 621 руб.

Покупка преобразователя частоты в данном случае окупится менее чем за год.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector