0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Фото 3

Регулятор напряжения

Фото 2

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

Простой регулятор напряжения на симисторе

Пожалуй, самая простая схема управления напряжением нагрузки для повторения, с неплохими характеристиками.

простой регулятор напряжения на симисторе

Схема простого регулятора напряжения на симисторе

Схема небольшая и уместится даже в маленький в корпус зарядки от телефона. По такой схеме собраны регуляторы оборотов пылесосов, например. Разве что динистор может быть заменён оптопарой.

Аналогичную сборку имеют и диммеры на АлиЭкспресс. В продаже имеются как с радиатором, так и без. Без радиатора допускается нагрузка до 60 Вт.

диммер для паяльника

Диммер для паяльника

Вам наверное нравятся

Серия TSGC TDGC, регулятор напряжения, можно последовательно регулировать выходное напряжение с красивой формы, не искажение кривой, небольшие размеры, малый вес, высокая эффективность и простой в использовании и надежной работы и другие характеристики своей превосходной производительности могут быть широко используется в промышленности (например, химической промышленности, металлургии, устройство и дозатор, механического и электрического оборудования, и легкой промышленности и т.д.), научный эксперимент, оборудования и бытовой электрический прибор для регулирования напряжения и температуры, освещения и управления питанием. Это идеальный регулятор напряжения переменного тока.

TSGC TDGC 2, 2,, TSGC TDGC2J2J — серия энергосберегающих регулятор напряжения изготовлены из импортированных кремний сталь, можно последовательно регулировать выходное напряжение(однофазные 0

Читайте так же:
Регулировка рулевой рейки фф1

250в три этапа(0

430V), с функциями не искажение кривой, малый объем, малый вес, высокая эффективность и удобство, надежность и производительность и так далее

ModelInput
TDGC voltOutput В.2-0.2220V0

250KVAsingle этапа V
2-0.5KVAsingle TDGC этапа 220V
2-1KVAsingle TDGC этапа 220V
2-2KVAsingle TDGC этапа 220V
2-3TDGC
TDGC KVAsingle этапа 220V2-5
TDGC KVAsingle этапа 220V2-10KVAsingle этапа 220V
2-15TDGC KVAsingle этапа 220V
2-20TDGC
TDGC KVAsingle этапа 220V2 на 30
TDGC KVAsingle этапа 220V2J фаза KVAsingle-0.5220V
TDGC0

250V2J-1
TDGC KVAsingle этапа 220V2J-2
TDGC KVAsingle этапа 220V2J-3
TDGC KVAsingle этапа 220V2J-5
TDGC KVAsingle этапа 220V2J-15
TSGC KVAsingle этапа 220V2-1.5380V0

430KVAthree этапа V
2-3TSGC
TSGC KVAthree этапа 380V2-9
TSGC KVAthree этапа 380V2J-6KVAthree этапа 380V
TSGC0

430V2J-9
TSGC KVAthree этапа 380V2J-15
TSGC KVAthree этапа 380V2J-30KVAthree этапа 380V

Краткие технические характеристики регулятора мощности РМ-2м AKIP-DON

  • Рабочий диапазон напряжений – 40 — 400 В
  • Программируемое напряжение на выходе – 35 — 255 В
  • Стабильность Uвых – ± 1 В
  • Функция разгона (обход регулировки) – есть
  • Максимальный ток управления симистором, не более – 1 А
  • Комплектация – упаковка, прибор РМ-2, инструкция, + симистор ВТА41-600BRG STM на 40A оригинал (подарок)
  • Монтаж на DIN-рейку, ширина 53 мм – 3 модуля

Регулятор напряжения 220 В 4000 Вт в корпусе или Сетевой регулятор мощности (диммер) 4000 Вт

Мощный электронный регулятор напряжения,

мощности AC 220V .

Диммер 4000Вт в корпусе -это м ощный электронный симисторный регулятор напряжения переменного тока , позволяет регулировать напряжение диапазоне от 0 В до входного напряжения (220 В).

Максимальная мощность, которую регулирует данный прибор 4000Вт . Для долговременной работы максимально не нагружайте.

Если надо регулировать нагрузку больше чем 2500 Вт, производитель рекомендует увеличить радиатор охлаждения, либо установить вентилятор охлаждения.

Регулятор мощности на 4000 Вт может регулировать яркость лам накаливания и мощно с ть нагревательных тенов , т.е желательно регулировать резестивную нагрузку .

Производитель НЕ рекоме н дует регулировать электро п риборы с и н дуктивно й и емко с тной нагрузкой электродвигатели , энергосберегающие и светодиодные лампы.

Читайте так же:
Регулировка клапанов митсубиси аутлендер 2 4 4g69

Благодаря широкому диапазону регулировки и большой мощности регулятор найдет широкое применение в быту.

Моменты, на которые стоит обратить внимание

1. Будьте внимательны при пайке соединений чтобы не сжечь компоненты вашей схемы.

2. Обыкновенный припой не сможет выдержать ток 3A, что может привести к тому что он расплавится и в дальнейшем к короткому замыканию. Используйте толстые медные провода или больше свинца чтобы соединять дорожки как показано на рисунке.

3. Любое короткое замыкание или слабая пайка может привести к порче намотки трансформатора, поэтому внимательно проверьте все соединения мультиметром прежде чем подавать на схему питание. Для дополнительной защиты можете использовать плавкий предохранитель на входе схемы.

4. Стабилизаторы больших токов обычно поставляются в металлических корпусах, поэтому когда будете размещать его на точечной плате не помещайте его слишком близко к другим компонентам схемы поскольку на их корпусах может появляться выпрямленное напряжение – в дальнейшем это может привести к пульсациям напряжения.
Не припаивайте провода к металлическому футляру, вместо этого используйте небольшой винт как показано на приведенном рисунке.

5. Не удаляйте из схемы конденсаторы, предназначенные для фильтрации питающих напряжений, иначе это может привести к повреждению вашей платы Arduino.

6. Не перегружайте трансформатор током более 3A, остановите работу схемы если услышите шипящий звук из трансформатора. В целях безопасности желательно не оперировать с токами более 2.5A.

7. Проверьте напряжение на выходе 7812 перед тем как подсоединять ее к Arduino. Проверьте ее на перегрев во время первого запуска схемы. Если ее нагрев все таки происходит это значит что плата Arduino потребляет больший ток чем следует, для решения этой проблемы уменьшите интенсивность подсветки ЖК дисплея.

↑ Схема регулятора мощности на полевых транзисторах

Впрочем, как бы там ни было, я решил собрать регулятор на полевых транзисторах (далее ПТ) с ШИ-управлением. В отличие от схем на ПТ с фазоимпульсным управлением, где существует привязка схемы к частоте сетевого напряжения, при ШИ-управлении схемой управления генерируются собственная последовательность импульсов, модулируя сетевую частоту.
Изменением ширины этих импульсов достигается изменение значения выходного напряжения.

Читайте так же:
Как регулировать сцепление ямз 236

Схема регулятора получается достаточно простой, малошумящей и работоспособной при любых значениях тока в нагрузке.
Начну, пожалуй, с эксплуатационных характеристик. До 200 Вт полевые транзисторы практически не греются (для этого обеспечено их полное открывание импульсами схемы управления).
При эксплуатации регулятора с нагрузкой, имеющей большую, чем 200 Вт мощность, на ПТ следует установить радиаторы.
Так, например, при мощности нагрузки 1 кВт, на открытом канале ПТ, имеющем, предположим, сопротивление 0,1 Ом, падение напряжения составит около 0,45 В, а рассеиваемая мощность превысит 2 Вт, что неизбежно вызовет разогрев кристалла транзистора. При длительной работе на мощную нагрузку (от 500 Вт и выше) может потребоваться обдув радиатора. При работе с мощным трансформатором (от UPS — в понижающем включении), вторичная обмотка трансформатора была нагружена 12-вольтовой автомобильной галогенной лампой мощностью 190 Вт.

Измерение напряжения постоянного тока с помощью цифрового мультиметра

1. Переведите регулятор в положение alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />. На некоторых цифровых мультиметрах (DMM) также предусмотрен вариант alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />. Если вы не знаете, что выбрать, начните с режима alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />, который соответствует более высокому напряжению.

2. Сначала вставьте черный щуп в разъем «COM».

Последовательность измерений напряжения постоянного тока цифровым мультиметром

Последовательность измерений напряжения постоянного тока цифровым мультиметром

3. Затем вставьте красный щуп в разъем «V Ω». По завершении измерения отсоедините щупы в обратном порядке: сначала красный, затем черный.

4. Подключите измерительные щупы к цепи: черный к контрольной точке отрицательной полярности (заземление цепи), красный — к положительной контрольной точке.

Примечание. Большинство современных цифровых мультиметров автоматически определяют полярность. При измерении напряжения постоянного тока не имеет большого значения, с каким контактом соприкасаются красный и черный выходы — с положительным или отрицательным. Если щупы соприкасаются с клеммами противоположных знаков, на экране появляется символ «минус». При использовании аналогового мультиметра красные выводы всегда должны соприкасаться с положительной клеммой, а черные — с отрицательной. Несоблюдение этого требования приведет к повреждению прибора.

Читайте так же:
Оборудование для регулировки форсунок дизельного двигателя

5. Прочитайте результат измерения на экране.

Другие полезные функции при измерении напряжения постоянного тока

6. Современные цифровые мультиметры по умолчанию работают в режиме автоматического выбора диапазона — в зависимости от выбранной на регуляторе. Чтобы выбрать фиксированный диапазон измерений, нажмите кнопку RANGE (Диапазон) несколько раз для выбора нужного диапазона. Если измеренное напряжение находится в диапазоне более низких значений alt=»Порядок измерения напряжения постоянного тока цифровым мультиметром» width=»» height=»» />, выполните следующие действия:

  1. Отсоедините измерительные щупы.
  2. Измените положение регулятора на [символ мВ пост. тока].
  3. Подсоедините измерительные щупы и прочитайте показания.

7. Нажмите кнопку HOLD (Удержание), чтобы выполнить устойчивое измерение. Его результаты можно просмотреть после завершения измерения.

8. Нажмите кнопку MIN/MAX (Мин./Макс.), чтобы выполнить измерение максимальных и минимальных значений. Цифровой мультиметр издает звуковой сигнал при регистрации каждого нового показания.

9. Нажмите кнопку относительного измерения (REL) или кнопку с дельтой (Ω), чтобы задать определенное контрольное значение цифрового мультиметра. Отображаются результаты измерений выше и ниже контрольного значения.

Примечание. Избегайте распространенной среди техников ошибки: ни в коем случае не вставляйте щупы в неправильные входные разъемы. Перед измерением напряжения постоянного тока убедитесь, что красный щуп вставлен во входной разъем с маркировкой V, а не A. На экране должен отображаться символ dcV. Если измерительные щупы вставлены в разъемы с маркировкой A или mA, при измерении напряжения в измерительной цепи возникнет короткое замыкание.

Анализ результатов измерения напряжения

  • Как правило, напряжение измеряют в следующих целях: a) определить наличие напряжения в данной точке и б) убедиться, что напряжение находится на нужном уровне.
  • Напряжение переменного тока может сильно варьироваться (от −10 % до +5 % от номинального значения источника питания), не вызывая никаких сбоев в цепи. Но даже незначительные перепады напряжения постоянного тока могут указывать на неисправность.
  • Точное значение допустимого изменения напряжения постоянного тока зависит от области применения. Пример см. в таблице ниже.
  • В некоторых областях применения постоянного тока значительные колебания постоянного тока не только приемлемы, но и необходимы.
    • Пример. Частоту двигателей постоянного тока можно регулировать путем изменения подаваемого напряжения постоянного тока. В этом случае измерение напряжения постоянного тока электродвигателя зависит от настройки регулятора напряжения.

    Порядок измерения напряжения постоянного тока цифровым мультиметром

    Как показано в таблице выше, у полностью заряженного автомобильного аккумулятора номиналом 12 В напряжение разомкнутой цепи может находиться в диапазоне от 11,9 В до 12,6 В (обычно 2,2 В на ячейку).

    • Значение 11,9 В указывает на разряженный аккумулятор.
    • Значение 12,6 В указывает на 100-процентный заряд аккумулятора. Промежуточные измеренные значения показывают, что заряд менее 100 %.
    • Если измеренное напряжение батареи немного повышено (3–5 %), это намного лучше, чем пониженное значение напряжения. Падение напряжения постоянного тока ниже стандартного номинального значения указывает на наличие неисправности.

    Измерения напряжения переменного и постоянного тока

    • В некоторых случаях напряжение постоянного тока измеряют в цепях с напряжением переменного тока.
    • Для обеспечения максимальной точности измерения напряжения постоянного тока сначала измерьте и запишите напряжение переменного тока. Затем измерьте напряжение постоянного тока, с помощью кнопки RANGE (Диапазон) выбрав такой диапазон напряжения постоянного тока, который равен диапазону напряжения переменного тока или превышает его.
    • Некоторые цифровые мультиметры могут одновременно измерять и отображать значения переменного и постоянного тока сигнала. На экране цифрового мультиметра результаты отображаются тремя способами (см. рисунок ниже):
      1. Составляющая переменного тока сигнала отображается на основном поле экрана, а постоянного тока — на дополнительном поле меньшего размера.
      2. Показания по постоянному току можно перенести на основное поле, при этом показания по переменному току будут отображаться на дополнительном поле (как на большинстве цифровых мультиметров).
      3. Комбинированное значение переменного и постоянного тока — эквивалентное среднеквадратичное значение сигнала.
        Порядок измерения напряжения постоянного тока цифровым мультиметром
    голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector