0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Делитель напряжения: схема и расчёт

Делитель напряжения: схема и расчёт

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

$ R_t = R_1 + R_2 = 900 unit<Ом data-lazy-src=

Пример рисунка резисторов в России и Европе (а), и в США (б)

В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:

Обозначения постоянных резисторов по ГОСТ 2.728-74

Обозначения постоянных резисторов по ГОСТ 2.728-74

По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:

Обозначение переменных резисторов по ГОСТ 2.728-74

Обозначение переменных резисторов по ГОСТ 2.728-74

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Читайте так же:
Как отрегулировать фары ix55

Как источник тока (драйвер) поддерживает нужный ток

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Драйвер светодиода 220 вольт

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Светодиодный драйвер на 12 вольт

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Подключение твердотельного реле

Твердотельные реле –это полупроводниковые устройства, которые позволяют управлять мощными нагрузками при помощи слабого сигнала, и могут применяться вместо привычных электромеханических реле, магнитных пускателей и электрических контакторов.

Читайте так же:
Регулировка рулевая рейка в гольфе 2

Что такое твердотельное реле

Твердотельные реле используют для коммутации силовых цепей исполнительных механизмов в цепях постоянного и переменного тока (однофазных и трехфазных) или в цепях, где требуется непрерывная регулировка напряжения нагрузки:

• в системах управления нагревательными элементами (ТЭНах);
• для непрерывной регулировки систем освещения;
• для управления маломощными двигателями, электромагнитами, соленоидными клапанами;
• для коммутации оборудования с частыми переключениями.

Конструктивно твердотельное реле (ТТР, SSR) представляет собой заключенную в цельнолитой корпус электронную плату с узлом для приема и обработки управляющего сигнала, оптическим модулем, обеспечивающим гальваническую развязку входной и выходной цепей, узлом для управления выходным ключом. При подаче напряжения на клеммы реле управляющий сигнал через оптопару достигает электронного силового ключа, который включает/отключает питание нагрузки.

На внешней части корпуса реле попарно расположены промаркированные винтовые клеммы:

1. Для подключения управляющего сигнала – 3 и 4.
2. Маркировка и количество клемм подключения нагрузки зависит от типа реле:
• однофазное → 1 и 2;
• трехфазное → А1, В1, С1 – для фаз питания, А2, В2, С2 – для нагрузки;
• реверсивное → R, S, T – для трех фаз питающего напряжения, U, V, W – для обмоток двигателя.

По сравнению с электромеханическими реле у твердотельных реле есть ряд преимуществ, обусловленных заменой подвижной электромеханической части (якоря и механически связанных с ним контактов) на полупроводниковые элементы:

1. Компактные размеры, позволяющие монтировать ТТР при недостатке места для монтажа.
2. Высокая скорость срабатывания и отключения.
3. Отсутствие электромагнитных помех при срабатывании.
4. Надежная изоляция между цепями управления и коммутации.
5. Возможность регулирования нагрузки.
6. Длительный срок службы без технического обслуживания за счет отсутствия подвижных частей.
7. Стойкость к вибрации и ударным нагрузкам.
8. Малое потребления электроэнергии.
9. Широкая область применения благодаря устойчивой работе при перепадах напряжения и тока.

Варианты подключения

Твердотельное реле, схема подключения которого зависит от типа подключаемой нагрузки, подбирается по нескольким параметрам:

1. Характеристикам управляющего сигнала (переменный или постоянный).
2. Току нагрузки (индуктивный, резистивный, емкостный).
3. По количеству фаз нагрузки (одна или три).
4. По способу управления выходным сигналом:

• с коммутацией через ноль используется для уменьшения влияния помех и импульсных бросков тока в схемах с резистивной (ТЭНы, лампы накаливания), индуктивной (клапаны, катушки соленоидов), емкостной (синхронные двигатели) нагрузками – реле включает питание нагрузки в том случае, когда величина напряжения на выходе равна нулю;
• фазовое, предусматривающее ручную регулировку параметров управляющего тока, используется для плавного изменения мощности нагрева ТЭНов или яркости осветительных приборов;
• мгновенное, при котором реле без задержек срабатывает при подаче управляющего сигнала.

Читайте так же:
Плавная регулировка частоты вращения двигателя

Подключение твердотельного реле имеет разнообразные схемные решения с включением дополнительных элементов, таких, как управляющие транзисторы, предохранители, варисторы, контроллеры, переменные резисторы:

1. Для подключения однофазной нагрузки, например, оборудования с аккумуляторным питанием, предназначена схема нормально-разомкнутого "контакта", включающая питание нагрузки при подаче постоянного напряжения на вход ТТР.
2. Для подключения систем освещения, нагревательных приборов и другого оборудования с питающим напряжением 220 В используется два варианта включения ТТР (с управляющим транзистором на входе):
• схема с нормально-разомкнутым "контактом", в которой питание на нагрузку поступает при подаче напряжения на входные клеммы управляющей цепи;
• схема с нормально-замкнутым "контактом", в которой подача напряжения на входные клеммы управляющей цепи отключает питание нагрузки.
3. Для управления однофазной нагрузкой двумя кнопками "Пуск" и "Стоп" существует схема с самоблокировкой. Особенность данной схемы в том, что управляющее напряжение подбирают равным нагрузочному.
4. Для коммутации трехфазной нагрузки применяют трехфазную схему с вариантами подключения "звезда", "треугольник", "звезда с нейтралью" в зависимости от особенностей работы оборудования, подключенному в качестве нагрузки. Возможно использование одного трехфазного твердотельного реле для подключения трех однофазных нагрузок одновременно.
5. Для изменения направления вращения электродвигателя используют реверсивную схему включения трехфазного ТТР с двумя контурами управления.

Подключение твердотельного реле к ТЭНу

Для примера рассмотрим, как подключить твердотельное реле к ТЭНуэлектрокотла или бойлера.Для этого нам понадобится ТЭН с номинальным напряжением 220В, однофазное твердотельное реле постоянного тока с фазовым управлением, переменный резистор 470 ОМ, предохранитель, провода для подключения устройств:

1. На управляющий вход ТТР подключаем питание от любого источника постоянного тока 12–24 В (блок питания, аккумуляторная батарея) через переменный резистор (потенциометр) → плюс на клемму 3, минус на клемму 4.
2. Подключаем ТЭН к домашней сети 220 В через силовые клеммы твердотельного реле:
• "ноль" → к клемме 1;
• "фазу" → через предохранитель и ТЭН к клемме 2.
3. В цепь управления реле подает постоянное напряжение, достаточное для срабатывания электронного ключа (от 3 до 32 В), после чего через выходные силовые клеммы 1 и 2 замкнется цепь питания ТЭНа, который начнет нагреваться. Вращая ручку потенциометра, регулируем напряжение входного сигнала на клеммах 3 и 4 и отслеживаем степень нагрева ТЭН в зависимости от величины напряжения на входе твердотельного реле.

Читайте так же:
Что питает клетку регулирует давление клеточной жидкости

Проверка корректности подключения твердотельного реле

Проверить правильность сборки схемы с твердотельным реле, как и работоспособность одиночного реле, обычными методами тестирования, применяемыми для электромеханических реле, например, мультиметром,не получится: между входом и выходом ТТР отсутствует электрическая связь. Многие модели твердотельных реле оснащены светодиодным индикатором, который сигнализирует о наличии управляющего напряжения, однако корректную работу проверяемой схемы подача напряжения на вход твердотельного реле не гарантирует.

Для проверки собранной схемы на силовые клеммы твердотельного реле 1 и 2 подключают обычную лампу накаливания, подают на управляющие клеммы 3 и 4 напряжение и визуально по загоранию лампочки убеждаются в правильности подключения элементов схемы.

Для проверки исправности одиночного твердотельного реле собирают простую электрическую схему, состоящую из двух источников питания (подающего управляющее напряжение на вход реле и нагрузки), выключателя, лампочки.

Схема номер 2

Эл-схема ПРОСТОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

Изготовление ПРОСТЫХ РЕГУЛЯТОРОВ НАПРЯЖЕНИЯ

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Читайте так же:
Регулировка рулевой рейки символы

Настройка преобразователя частоты с программированием параметров

При нажатии клавиши Prog высвечивается группа значений. Стрелками задаем необходимый номер, нажимаем на ВВОД, появляется номер параметра. Это значение меняем клавишами, возвращаемся к группе параметров клавишей MODE.

Для подтверждения выбора значения – клавиша Prog, на дисплее появляется значение. Изменяем его клавишами, подтверждаем клавишей Ввод.

После сохранения параметра высвечивается надпись End ненадолго. При возникновении ошибки появляется Err, означает недопустимые параметры, неправильное действие (многие параметры программируются при выключенном приводе).

В итоге составлен алгоритм начального запуска и первой настройки преобразователя частоты:

  • Контроль частотного преобразователя мотора и питания.
  • Первый запуск и сброс значений параметров на заводские до 50 герц.
  • Настройка опций управления.
  • Настройка источника задающей частоты.
  • Окончательные настройки.

В инструкции имеются ответы на вопросы, возникающие в процессе настройки.

Если управление частотником происходит вручную, а не контроллером, то возникает неисправность резистора переменной величины (потенциометра). Если сломался наружный прибор, то переключаются на выносную панель. Если неисправен прибор на выносной панели и нет наружного, то его устанавливают самостоятельно.

Шум переменного резистора

Даже новые и надежные резисторы при высоком температурном режиме, который значительно выше абсолютного нуля, могут стать основным источником появления шума. Резистор переменный сдвоенный применяется в электрической цепи в микросхеме. О появлении шума стало известно из фундаментальной флуктуационно-диссипационной теоремы. Она известна под общепринятым названием «теорема Найквиста».

Если в схеме есть резистор переменный СП с большими показателями сопротивления, то человек будет наблюдать эффективное напряжение шума. Оно будет иметь прямую пропорциональность к корням из температурного режима.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector