0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Видео на Запорожском портале

При затрудненном пуске дизеля, дымном выпуске, а также при замене и установке топливного насоса после регулировки на стенде или ремонта обязательно проверьте установочный угол опережения впрыска топлива на дизеле.

Проверку угла производите в следующей последовательности:

а) для топливных насосов высокого давления мод.363.1111005-40

  • установите поршень первого цилиндра на такте сжатия за 30 – 40° до положения требуемого установочного угла опережения впрыска по шкале на корпусе демпфера;
  • установите рычаг останова и рычаг управления регулятором в положение, соответствующее максимальной подаче топлива;
  • отсоедините трубку высокого давления от штуцера первой секции насоса и вместо нее подсоедините контрольное приспособление, представляющее собой отрезок трубки высокого давления длиной 50…70 мм с нажимной гайкой на одном конце и вторым концом, отогнутым в сторону на 90° (рисунок 25);

Рисунок 25 – Эскиз контрольного приспособления

1 – нажимная гайка; 2 – трубка высокого давления

  • заполните топливный насос топливом, удалите воздух из системы низкого давления и создайте избыточное давление насосом ручной прокачки до появления сплошной струи топлива из трубки контрольного приспособления;
  • медленно вращая коленчатый вал дизеля по часовой стрелке и поддерживая избыточное давление в головке насоса (подкачивающим насосом), следите за вытеканием топлива из контрольного приспособления. В момент прекращения вытекания топлива (допускается каплепадение до 1 капли за 10 секунд) вращение коленчатого вала прекратить;
  • определите положение градуированной шкалы на корпусе демпфера 2 относительно установочного штифта 3, закрепленного на крышке распределения 1 (рисунок 26).

Рисунок 26 – Установка угла опережения впрыска топлива.

1 – крышка распределения (крышка люка снята); 2 – демпфер силиконовый; 3 – штифт установочный; 4 – шкив

Если штифт находится в диапазоне делений «19…21» на градуированной шкале, то угол начала подачи топлива установлен правильно, т.е. поршень первого цилиндра установлен в положение, соответствующее 19…21° до ВМТ.

Если штифт не находится в указанном диапазоне, произведите регулировку, для чего проделайте следующее:

  • вращая коленчатый вал, совместите деление «20» на градуированной шкале корпуса демпфера с установочным штифтом;
  • снимите крышку люка 1 (рисунок 4);
  • отпустите на 1…1.5 оборота гайки крепления шестерни привода топливного насоса к по-лумуфте привода;
  • при помощи ключа поверните за гайку валик топливного насоса против часовой стрелки до упора шпилек в край паза шестерни привода топливного насоса;
  • создайте избыточное давление в головке топливного насоса до появления сплошной струи топлива из трубки контрольного приспособления;
  • поворачивая вал насоса по часовой стрелке и поддерживая избыточное давление, следите за вытеканием топлива из контрольного приспособления;
  • в момент прекращения вытекания топлива прекратите вращение вала и зафиксируйте его, зажав гайки крепления шестерни привода к полумуфте привода.
Читайте так же:
Регулировка поплавковой камеры карбюратора мопед

Произведите повторную проверку момента начала подачи топлива.

Отсоедините контрольное приспособление и установите на место трубку высокого давления и крышку люка.

б) для топливных насосов высокого давления PP6M10P1f-3491; PP6M10P1f-3492

  • установите рычаги управления регулятором в положение, соответствующее максимальной подаче топлива;
  • отсоедините трубку высокого давления от штуцера первой секции насоса и вместо нее подсоедините моментоскоп (накидная гайка с короткой трубкой, к которой с помощью резиновой трубки подсоединена стеклянная с внутренним диаметром 1.2 мм);
  • проверните коленчатый вал дизеля ключом по часовой стрелке до появления из стеклянной трубки моментоскопа топлива без пузырьков воздуха;
  • удалите часть топлива из стеклянной трубки, встряхнув ее;
  • проверните коленчатый вал в обратную сторону (против часовой стрелки) на 30 – 40°;
  • медленно вращая коленчатый вал дизеля по часовой стрелке, следите за уровнем топлива в трубке, в момент начала подъема топлива прекратите вращение коленчатого вала;
  • определите положение указателя установочного штифта 3, закрепленного на крышке распределения 1 (рисунок 26).

Если он находится в диапазоне делений «21…23» на градуированной шкале, нанесенной на корпусе гасителя крутильных колебаний, то установочный угол опережения впрыска топлива установлен правильно, т.е. поршень первого цилиндра установлен в положение, соответствующее 21…23° до ВМТ.

Если указатель не находится в указанных диапазонах, произведите регулировку, для чего проделайте следующее:

Система контроля соотношения «воздух/топливо» для газодизельных двигателей.

Исторически сложилось, что газодизельные решения должны быть максимально простыми и дешевыми. Такой подход диктовался прежде всего экономическими соображениями так, как конверсии подвергались восновном бывшие в употребление машины с маленьким остаточным сроком службы. И он безусловно оправдан. Не стоит забывать и о надежности, по настоящему надежны только простые решения.

Каждое новшество и усложнение систем с большим трудом пробивало себе дорогу в жизнь. Первое поколение газодиельных систем не имело даже средств контроля подачи дизельного топлива ( эмуляция педали или упраление давлением для топливной аппаратуры common rail ). Однако, производителям и клиентам достаточно быстро стало понятно, что без уменьшения количества подаваемого топлива практически не возможно добится замещения выше 40%. И системы эмуляции нажатия на педаль газа стали использоваться в газодизельных комплектах повсеместно.

Читайте так же:
Регулировка гбо на автобусе паз

Очередным претендентом на новый стандарт «де факто» для газодизельных систем является воздушная заслонка.

Для понимания причины важность регулирования количества подаваемого воздуха придется немного углубится в теорию.

Понятие о регулировании ДВС ( качественное и количественное регулирование ). [1]

Первый способ регулирования ДВС — изменение массы свежего заряда, поступающего в цилиндр двигателя. В этом случае для понижения мощности двигателя уменьшают массу свежего заряда без изменения состава горючей смеси. Такой способ регулирования называется количественным регулированием и практически осуществляется путем установки дополнительного сопротивления в виде дроссельной заслонки во впускном трубопроводе. В результате дросселирования свежего заряда давление его уменьшается. Чем больше прикрыто проходное сечение, тем выше сопротивление впуска и меньше наполнение цилиндра, а следовательно, развиваемая двигателем мощность.
Существенным недостатком количественного регулирования является увеличение насосных потерь вследствие дросселирования и значительное снижение давления в конце сжатия при работе на малых нагрузках. К преимуществу этогоспособа регулирования следует отнести то, что при этом можно выбрать рациональный коэффициент избытка воздуха, обеспечивающий хорошее сгорание топлива на всех режимах работы двигателя.

При втором способе регулирования — остается постоянным количество воздуха,поступающего в цилиндр, но меняется расходвпрыскиваемого через форсунку топлива, что приводит к изменению качества горючей смеси, а следовательно, теплоты сгорания горючей смесии развиваемой двигателем мощности. Этот способ регулирования называется качественным регулированием. Ввиду того, что расход воздуха, поступающего в цилиндр, с изменением нагрузки остается постоянным, при качественном регулировании давление ра в цилиндре в конце впуска, давление рс в конце сжатия и температура Тс в конце сжатия при одной и той же частоте вращения не меняются.
Значительное изменение состава горючей смеси при качественном регулировании обусловливает невозможность его применения в двигателях с внешним смесеобразованием: при увеличении коэффициента избытка воздуха обедняется горючая смесь, что приводит к понижению скорости сгорания, мощности и ухудшениюэкономичности двигателя. При слишком обедненной смеси появляются пропуски зажигания, работа двигателя становится неустойчивой и возможна его остановка.Специфические особенности образования рабочей смеси и процесса сгоранияв дизелях определяют возможность быстрого воспламенения и полного сгорания топлива при больших коэффициентах избытка воздуха.
Третьим способом является способ регулирования, применяемый в газовых двигателях — так называемое смешанное регулирование.При смешанном регулировании увеличения или уменьшения мощности в области больших нагрузок достигают путем изменения состава смеси в пределах допустимых значений а, в области малых нагрузок — путем изменения расхода смеси.

Читайте так же:
Регулировка реле давления italtecnica

Понятие о стехеометрическом соотношении. Процессы сгорания дизельного топлива

Стехиометрическая горючая смесь — смесь окислителя и горючего, в которой окислителя ровно столько, сколько необходимо для полного окисления горючего.[3]

Стехиометрическая смесь обеспечивает полное сгорание топлива без остатка избыточного окислителя в продуктах горения. Исходя из содержнания C и H2 в ДТ можно вычислить, что для сгорания 1 кг дизельного топлива требуется 14,5 кг воздуха, а для сгорания 1 кг чистого метана 17,2 кг воздуха.

Съемка высокоскоростной камерой струи дизельного топлива

Практически же для полного сгорания в цилиндры дизеля подается воздуха СУЩЕСТВЕННО больше, чем теоретически необходимо. Это вызывается тем, что дизельное топливо даже при самых современных технологиях распыления, остается каплей, но не молекулой ( см. иллюстрацию ниже [2]).

Горение этой капли осуществляется только в очень маленьклм «шарике» воздуха вокруг этой капли. Дизелю всегда нехватает воздуха, по этому на дизелях и нет воздушных залонок ( на самом деле иногда бывают, для исключения белого дымления при запуске или для обеспечения каких-то экзотических режимов, связанных с экологическими требованиями.) Собственно из этой вечной нехватки и вытекает качественное регулирование дизельных двигателей.

Для количественного измерения качества горючей смеси используется соотношение воздух-топливо (air fuel ratio, AFR). AFR = масска в кг воздуха/масса в кг толива.

На режимах малой нагрузке AFR высокооборотных транспортных дизелей может доходить до значений 100 и выше. По мере увеличения нагрузки на двигатель AFR стремится приблизится к стехимометрическому, но все равно превышает его. Занчения AFR соответсвующие подлинной стехиометрии можно увидеть на дизелельном двигатели только в короткие моменты, когда подача топлива резко возрасла, а турбонагнетатель не успел еще раскрутится и подать достаточное количество воздуха.

Процессы сгорания композитного топлива в газодизельном двигателе.

При реализации класического газодизельного цикла без возможности регулирования количества подаваемого воздуха в режимах малых нагрузок сгорание газзообразного топлива проходит в условиях сверхобедненной смеси. По причинам снижения температуры сгорания и скорости сгорания такой смеси наблюдается существенное недогорание газового топлива с последующем выбрасывания его излишков через выхлопной коллектор.

Читайте так же:
Ямз 534 регулировка клапанов зазоры

Потери тепла вследствии недогорания топлива в двигателе ГД100 [4]

Screenshot from 2020-06-09 07-43-30

Кроме яления недогорания, при определенных режимах работы ДВС может возникать явление срыва процесса сгорания сильно обедненной газо-воздушной смеси, что выражается в неприятных звуках и скачкообразному изменению тяги.

Реализация системы управления количеством подаваемого воздуха для газодизельных двигателей.

На практике возможно 2 варианта.

Вариант 1. Воздушная заслонка может быть установлена непосредствено перед входным коллектором, реализуя классическую схему количественного регулирования. Преиимуществом данного подхода является возможность работать на смесях благоприятного состава во всем диапазоне рабочих характеристик газодизельного двигателя. Миниусы такого подхода заключаются в резком снижении топливной эффективности двигателя на малых нагрузках.

Вариант 2. Воздушная заслонка установлена в обход турбины для организации сброса избыточного давления с выхода на вход турбонагнетателя. Реализуется специфический вариант смешанного регулирования с элементами количественного и качественного регулирования в зависимости от режима работы газодизельного двигателя.

Сравнительные результаты применения Врианта 1 и Варианта 2 для дизельного двигателя CUMMINS ISF 2.8 на режиме хлостого хода:

РежимыПотребление ДТПотребление газа
Дизель1.5
Вариант 10.53
Вариант 211
Вариант 1 ( без подачи газа)1.7
Вариант 2 ( без подачи газа)1.5

Выводы и практические рекомендации.

Система контроля подаваемого топлива для газодизельных двигателей позволяет снизить количество потребляемого газа необходимого для замещения 1 л ДТ примерно на 20% с 1.2 нм3 на 1 ДТ, до 1 нм3 на 1 л ДТ, что позволяет при сохранении замещения увеличить пробег ТС на одной заправке. Улучшение словий сгорания природит к росту замещещения дизельного топлива газовым на 10-15% по сравнению с обычными газодизельными системами.

Для практического применения в газодизельных двигателях предпочтительным представляется Вариант2, по следующим соображениям:

  • Несмотря на невозможность обагащения смеси на режимах с малым давлением наддува, общая топливная эффективность газодизельного двигателя не ухудшается.
  • Подача газа перед турбиной создает идеальную гомогенную смесь, что улучшает условия сгорания.
  • Конструктивная простота исполнения.
  • Большая взрывопожаро безопасность.

Июнь 2020 года. Абакумов А.М.

Наши референции.

Мы более 10 лет разрабатываем газодизельные комплекты. Все болезни роста позади. От 140 до 2100 Л, более 15 типов двигателей.

Вся выгода в одном месте

Федеральные дотации. Региональные льготы. Скидка на газ от ГГМТ

Ставишь пропан ?

Зрарабатываете до 150.000 рублей с одной установки газодизеля. Стань нашим региональным партнером.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector